
Investigating the usage of Social Media Data for Stock Market

Inference and Portfolio Construction

Ivan Silajev
Lewis Broderick-Gatrell

Warwick Finance Societies
ivan.silajev@warwick.ac.uk

lewis.broderick-gatrell@warwick.ac.uk

Contents

1 Introduction 1

2 Preliminaries 1

3 Data Collection Methodology 1
3.1 Text & Time Data . 1
3.2 Stock Price, Volume & Ticker Data . 2
3.3 Sentiment Data . 2
3.4 Ticker Mentions & Frequency Data: General Approach 3
3.5 Ticker Mentions & Frequency Data: Cashtag Approach 3

4 Results 4
4.1 Correlation of Social Media Data with Market Data 4
4.2 Portfolio Construction with Cashtag Ticker Frequency Data 5

5 Conclusion & Evaluation 6
5.1 Correlation Evaluation . 6
5.2 Portfolio Construction Evaluation . 6

A Appendix 7
A.1 Code Overview - Connecting API and Data Extraction 7

A.1.1 Packages . 7
A.1.2 API Client Setup . 7
A.1.3 Ticker Symbol List . 7
A.1.4 Sentiment Analyser . 8
A.1.5 Submission Extraction . 8
A.1.6 Data Extraction . 9

A.2 Code Overview - Portfolio Construction and Evaluation 10
A.2.1 Packages . 10
A.2.2 API Setup And Obtaining Ticker Data . 10
A.2.3 Returns Calculation . 11
A.2.4 Portfolio Construction and Analysis . 12

A.3 Data Comparisons . 14

B Bibliography 20

1

1 Introduction

This research report studies the effectiveness of using sentiment and stock ticker mentions data from
Reddit posts to explain price and volume changes in the stock market.

The project behind this report utilised the Python programming language to extract and analyse the
necessary data. The main tasks of the project involved:

• Studying text data, comprising user submissions and comments, coming from the r/wallstreebets
subreddit

• Carrying out sentiment analysis with a natural language processing (NLP) method that assigns
sentiment scores to text data

• Comparing the finalised data to stock price and volume data extracted from Yahoo Finance

• Testing portfolio performance using stock ticker frequency data

The motivation behind this report is to justify further using big data to aid in predicting market
changes and improving portfolio performance. The research can inspire others to create trading algo-
rithms based on social media data. The report will also increase WFS’s involvement with programming
and data science.

2 Preliminaries

This project involved us testing the hypothesis below:

Can one infer future stock market changes using sentiment intensity and stock ticker mentions data
from Reddit posts?

Before proceeding straight to evaluating the evidence for the hypothesis, we address what evidence
(data) we sourced and answer the following questions for each of them:

• From where was the data sourced?

• How was the data sourced?

• How reliable is the data?

We also consider the form of the data, determining how easily one can infer from and use it. Lastly,
we state how we conclude the hypothesis’s validity from the data.

3 Data Collection Methodology

3.1 Text & Time Data

We chose the r/wallstreetbets subreddit as our source of text data for the project because of its history
of significantly affecting stock market prices.

At around January 2021, r/wallstreetbets users collaborated on forcefully increasing GME’s (GameStop’s)
stock price through excessive short-selling of the stock. The effort drove several companies and hedge
funds into losses. This event served as a reminder that social media activity can significantly affect
the real world, including the market.

1

We used the PRAW (Python Reddit API Wrapper) Python package to pull text data from r/wall-
streetbets. This package is usable in conjunction with the PSAW (Python Pushshift.io API Wrapper)
to attain greater flexibility in choosing which submissions we pull from the subreddit, including specific
dates. The wrappers also provide the postage time for each submission and comment.

Subreddits offer a few categories to view submissions from. They are:

• Hot, containing submissions with overwhelmingly fast upvote rates

• New, containing the most recent subreddit submissions

• Rising, containing new submissions with high upvote rates

• Top, containing submissions that accumulated the most number of upvotes for a given period

We chose to use the hot section of r/wallstreetbets as our first source. The hot section is the first page
any user sees upon entering the subreddit and likely interacts with, and it has the most number of
comments overall. Moreover, sourcing from the hot section ensured that we pulled data from human
approved submissions & comments not written by spambots.

Every subreddit submission has a posting time given to the nearest second. Thus, one can analyse
subreddit text data at minute intervals if users publish submissions at a high enough rate. Hot
submissions from r/wallstreetbets have a posting frequency of about three per hour, which Reddit
automatically replaces when they stop trending or when their time expires. Therefore, it was enough
to analyse the text data on a day to day basis.

3.2 Stock Price, Volume & Ticker Data

We sourced the stock price and volume data from Yahoo Finance. Investors widely regard Yahoo
Finance as a reliable source of stock data. Yahoo provides the data free of charge for any desired
period and for almost any time interval between each price update (to the nearest minute).

We extracted the Yahoo Finance stock market prices and volume data using the yfinance and pandas
datareader Python packages.

We downloaded the NYSE, AMEX and NASDAQ ticker symbol lists from the official NASDAQ
website. It’s entirely possible to use tickers from other markets and index tickers too.

3.3 Sentiment Data

We used the NLTK (Natural Language Toolkit) Python package to create sentiment intensity scores
for the text data. NLTK is a highly respected natural language processing package providing a broad
assortment of NLP tools.

The package provides the ’SentimentIntensityAnalyzer’ function class for assigning sentiment intensity
scores to Python strings. These scores are:

• pos, the proportion of the text string consisting of positive sentiment

• neu, the proportion of the text string consisting of neutral sentiment (no sentiment)

• neg, the proportion of the text string consisting of negative sentiment

• compound, a normalised sum of the sentiment scores of each component of the given string

Note that NLTK uses neither pos, neu nor neg for calculating compound.

2

Analysts often use the compound score (statistic) to measure sentiment in political comments to
determine the proportion of internet users who favour a given political party. Similarly, one can
evaluate the sentiment towards different stocks by assigning a text’s compound score to any stock
ticker symbol found in it. It’s possible to utilise the pos, neg and neu scores for the analysis, but we
omitted them for simplicity.

3.4 Ticker Mentions & Frequency Data: General Approach

We created a script to determine what ticker symbols a given text mentions. Firstly, it removes all
characters from a text string that do not compose any ticker symbols (e.g. lower case letters). Then,
the script records the tickers by comparing the leftover text with the ticker list, detecting which tickers
are present and how many.

The r/wallstreetbets subreddit is prone to spambots that can potentially promote specific stocks with
spam. The Python script for recording ticker symbols is vulnerable to such artificial mentions and
could lead to false signals. This vulnerability further justified sourcing text data from the hot category
of the subreddit, as bot submissions don’t usually reach the hot section.

A technical issue arising from the ticker recording script is that it also pulled single character ticker
symbols, even when the analysed text did not explicitly mention them. Any sentences in the text data
that started with capital letters contributed to the single letter ticker frequencies. Other tickers that
excessively came up due to non-ticker related mentions were ’DD’, ’NEW’ and ’ID’.

We implemented a filter to the script that ignores any single character ticker symbol it found, as well
as the three excessively mentioned ones. We sacrificed the ability to detect certain tickers to remove
excessive noise from the data.

Another criticism is that the script does not detect any mentions of the company names themselves.
Not all users refer to stocks by their tickers. Implementing a script for detecting company names may
require a more sophisticated approach, as people do not usually refer to companies by their full names.

3.5 Ticker Mentions & Frequency Data: Cashtag Approach

Since the hot section of the subreddit provides posts from a limited time frame (12 days) we resorted to
the cashtag approach to record ticker frequencies, a faster method of collecting ticker frequency data.
This way, we traded the opportunity to collect sentiment data with using a less resource-intensive
data collection method.

Using the psaw wrapper package we first scraped data from the wallstreetbets subreddit. When dis-
cussing stocks and investment ideas, users often post a $ symbol in front of the relevant stock’s ticker
they are discussing. This is called a cashtag and we leveraged its widespread usage to identify posts
which directly mentioned tickers.

The function we built looked at all of the posts in this subreddit from November 2020 to November
2021 at weekly intervals. For each week it pulled all the posts that had been submitted and scanned
each them for a cashtag. If a cashtag was identified then the associated ticker was cross referenced
against a list of US listed stocks. This was done so that we could calculate which tickers were discussed
during each week and how many times they were mentioned.

Our research focused on looking at the ’hottest stocks’, i.e. the most discussed. So we only looked
at tickers that had 20 or more mentions in a week. Each stock that exceeded this limit was inputted
into a data frame along with the number of mentions and the start and end date of the corresponding
week.

3

4 Results

4.1 Correlation of Social Media Data with Market Data

We determined the overall popularity of each ticker symbol by counting the number of times each
symbol appears in a comment. Below is the table of the top nine mentioned tickers from the 22nd
November 2021 to 3rd December 2021:

Ticker Company Mentions

GME GameStop 555

WISH Wish 474

TSLA Tesla 252

PLTR Palantir Technologies 220

BABA Alibaba Group 217

AMD Advanced Micro Devices 205

BB BlackBerry 204

CLOV Clover Health 193

AMC AMC Entertainment 166

Table 1: Ticker symbols and their mention frequencies

Observing the table, we see that the five most popular ticker symbols were GME, WISH, TSLA, PLTR
and BABA throughout the twelve days. We created time-series of the frequencies and sentiment scores
at daily intervals for each of the top five ticker symbols.

Each ticker has two time-series representing data from Reddit (ticker frequencies and sentiment) and
three representing its market data (open, close and volume). We made six data set comparisons for all
the top five symbols using these series. Readers can find these comparisons in this report’s appendix
(A.3).

Upon analysing all five sets of graphs, we see that the ticker frequencies and sentiment data have little
to no correlation with their corresponding stocks’ open and close prices.

Unsurprisingly, the ticker frequency time series correlate well with the volume of their respective
stocks, which is especially evident for the BABA and TSLA tickers. However, there is a visible one
day lag between the volume and ticker frequency data, suggesting that despite the correlation, ticker
mentions did not have any predictive power over the analysed period.

(a) BABA Volume & Ticker Frequency Comparison (b) TSLA Volume & Ticker Frequency Comparison

Figure 1: Selected Volume & Ticker Frequency Graphs

4

On the other hand, the sentiment data had a weak correlation with the volume data. The conclusion
makes sense since the sentiment score is too vague of a measure. One can not fully determine the
sentiment expressed towards something by considering the sentiment of each word in the sentence
individually, which is what the ’SentimentIntensityAnalyzer’ NLTK function does.

A more efficient NLP method for deriving a sentiment score would consider what ticker symbol is the
sentiment directed towards in a given sentence and the reason behind the sentiment. Sometimes, users
explicitly state whether they held a long, short or no position on a stock. This factor can explain their
expressed sentiment and clarify the relationship of sentiment with the stock price.

4.2 Portfolio Construction with Cashtag Ticker Frequency Data

Using the 12 months of data obtained in the ’cashtag’ approach, we calculated each stocks return
during the week it was discussed. We did this by pulling its financial data from the Yahoo Finance
API, accessing it with the Pandas Datareader package. We calculated both the return for the week
it was mentioned and the return for the following week. We also calculated the volatility of the stock
for these two periods.

Using this data we could take a look at the relationship between returns and number of mentions.
From this we calculated the hypothetical portfolio of each set by calculating an equally weighted bas-
ket of the ’hottest’ stocks from that week (mentions greater than 20) and calculating the return of
these, for both the week they are mentioned a lot (Week 0) and the following week (Week 1).

First calculating the correlation between returns and number of mentions shows that there does not
seem to be a very strong linear relationship between these variables. The correlation coefficient
between the number of mentions and Week 0 returns and volatility is calculated to be 0.11 and 0.26,
respectively. Similarly, correlation coefficient between the number of mentions and Week 1 returns
and volatility is −0.08 and 0.12. However, plotting the returns captures the actual performance of
these stocks.

(a) Week 0 Strategy (b) Week 1 Strategy

Figure 2: Strategies vs S&P 500 Benchmark Cumulative Returns (Based at 1)

Figure 2 shows that both strategies out perform the index. Looking at Figure 2a, we see that the 0
Week strategy outperformance is drastic, with the total return for the period at 11072.16% compared
to the S&P 500’s 29.63% for the same period. However, this return is completely unrealistic as this is
the return calculated for the week in which the stocks were most discussed and would require a tremen-
dous amount of predictive capability and luck to achieve this. The reason the strategy performed so
well is likely because the reddit users were discussing these stocks because they were performing so
well, so the investment tips from reddit users were probably not driving the performance rather the
relationship was likely the other way round. This strategy also incurred a very high volatility of
23.31% compared to 1.59% for the S&P 500 over this period.

5

Looking at Figure 2b we see that the 1 Week strategy also outperformed, returning 101.45% in the
analysed period. Its volatility is calculated to be 15.01%, with a risk-adjusted return of 6.76%. The
S&P 500’s risk adjusted return for the period is calculated to be 18.64%, so it is notable that whilst
this strategy outperforms it does so at the expense of incurring much higher volatility compared to
the benchmark. Furthermore, we can also see that the strategy has performed badly since July and
is down from its peak 416.76% return that it achieved in this month.

It is worth noting that unlike the previous strategy, this one is feasible to run as it requires the previous
week’s reddit data. However, it is oversimplified as it assumes that there are no transaction costs or
any liquidity constraints that could potentially compromise trading opportunities. These would likely
result in lower returns than what we have simulated.

5 Conclusion & Evaluation

5.1 Correlation Evaluation

With the data collected for this project, it was implausible to efficiently answer the hypothesis stated
in this report’s preliminaries section. The period of 12 days was too short, and the sampling technique
was biased since we only considered data from the subreddit’s hot section.

The conclusion that the ticker mentions had no predictive power was only specific to the analysed
period. It’s possible that carrying out the same analysis with data from January 2021 would yield an
opposite result.

Future iterations of this project should consider analysing all posts from the subreddit over a broader
period using better NLP and text recognition algorithms for collecting more accurate data.

5.2 Portfolio Construction Evaluation

Our results have shown that this approach is akin to a momentum driven strategy. The reddit user’s
posts identified stocks that were being traded in high volumes and our strategies in turn capitalised
on this. Our results have shown that this strategy can be profitable, but it also has some very severe
limitations and the computational expense of obtaining more data from a greater time period meant
that the analysis could only be conducted over one year.

The first major limitation is the fact that as we just used the number of mentions as the primary indi-
cator we failed to gather information on whether the corresponding posts were positive or negative in
tone. Gathering this information would enable further research into a ’long/short’ strategy and seeing
how this performs.

Another limitation is the use of cashtags to identify the tickers. Whilst some reddit users utilise these,
there are many that do not and this makes it harder to distinguish between ticker mentions or other
words in the English language, e.g. WISH. This means that many of the actual ticker mentions may
have been missed and not fully accounted for in the analysis. Finally, as previously mentioned, both
the strategies do not account for transaction costs or liquidity issues that may be incurred.

Overall this approach showed that there may be an opportunity to create a profitable strategy from
reddit discussions. At the minimum it is an interesting and useful indicator. Further research and
more sophisticated analysis, such as utilising NLP alongside it, may improve the strategy further.

6

A Appendix

A.1 Code Overview - Connecting API and Data Extraction

This section provides a short overview of the code used for connecting to the Reddit API and collecting
the data for this project.

A.1.1 Packages

Begin by importing the following packages:

• pandas, for tabular data manipulation

• numpy, for array manipulation

• praw and psaw, for accessing the Reddit API

• datetime, for using ’datetime’ data types

• sub from re, for character filtering for ’str’ data types

• Counter from collections, for storing counts of individual objects

• nltk, for NLP functions

A.1.2 API Client Setup

Create an API client through which one can access and extract data from Reddit.

reddit_client = praw.Reddit(

client_id = "client_id",

client_secret = "client_secret",

user_agent = "user_agent",

)

The client ID and secret are created and given once creating an app on the official Reddit developer
portal.

A.1.3 Ticker Symbol List

Import the set of ticker symbols you want to detect in a user submission.

Load stock ticker symbols from:

- ’amex_symbols.csv’

- ’nasdaq_symbols.csv’

- ’nyse_symbols.csv’

dataframe_amex = pd.read_csv(

filepath_or_buffer = ’data_ticker_symbols/amex_symbols.csv’,

)

dataframe_nasdaq = pd.read_csv(

filepath_or_buffer = ’data_ticker_symbols/nasdaq_symbols.csv’,

)

dataframe_nyse = pd.read_csv(

filepath_or_buffer = ’data_ticker_symbols/nyse_symbols.csv’,

)

7

Convert dataframes into series consisting

of only symbol data

series_amex_symbols = dataframe_amex[’Symbol’]

series_nasdaq_symbols = dataframe_nasdaq[’Symbol’]

series_nyse_symbols = dataframe_nyse[’Symbol’]

Collect all the ticker symbols into a single series. Then, remove all tickers that are single letter and
are either ’NEW’, ’ID’ or ’DD’.

series_full_symbols = pd.Series()

series_full_symbols = series_full_symbols.append(

to_append = series_amex_symbols

)

series_full_symbols = series_full_symbols.append(

to_append = series_nasdaq_symbols

)

series_full_symbols = series_full_symbols.append(

to_append = series_nyse_symbols

)

list_full_symbols = list(series_full_symbols)

list_full_symbols = [

string_i

for string_i

in list_full_symbols

if (len(string_i) > 1)

and not (string_i

in [’NEW’,’ID’,’DD’])

]

A.1.4 Sentiment Analyser

Download the ’vader lexicon’, the dictionary used by the ’SentimentIntensityAnalyzer’ function to
assign sentiment scores to words.

nltk.download(’vader_lexicon’)

from nltk.sentiment.vader import SentimentIntensityAnalyzer as SIA

sia = SIA()

A.1.5 Submission Extraction

Connect to a specified subreddit and create a list of submissions from the ’hot’ section.

subreddit_main = reddit_client.subreddit(

’wallstreetbets’

)

list_submissions = list(

subreddit_main.hot(

limit = None

)

)

8

A.1.6 Data Extraction

Extract the ticker mentions data from any text as follows:

This part filters out any irrelevant characters

from the string input ’string main’

string_mod = sub(

pattern = ’[^^/A-Z]’,

repl = ’ ’,

string = string_main,

)

Split ’string_mod’ into a list of the left over

string characters

list_split = string_mod.split()

Filter strings in ’list_split’ so they also belong

to ’list_filter’, which can be assigned as

’list_full_symbols’

list_filtered = [

string_i

for string_i

in list_split

if string_i

in list_filter

]

Finally, convert ’list_filtered’ into a ’Counter’

object to turn it into a multiset

counter_data = Counter(

list_filtered,

)

Extract sentiment data from any text as follows:

Create the dictionary of sentiment data

extracted from the input ’string_main’

dict_polarity_scores = sia.polarity_scores(

text = string_main,

)

Use only the ’compound’ data to create

’float_compound’

float_compound = dict_polarity_scores[

’compound’

]

9

A.2 Code Overview - Portfolio Construction and Evaluation

Below contains the code used to collect and process ticker data from reddit for a specified time period,
create the portfolios for each strategy and evaluate it.

A.2.1 Packages

Begin by importing the following packages:

• pandas, for tabular data manipulation

• numpy, for array manipulation and mathematical functions

• psaw, for accessing the Reddit API

• datetime, for using ’datetime’ data types

• pyplot from matplotlib, for graphs

• web from pandas_datareader, for accessing financial data from ’Yahoo Finance’

• relativedelta from dateutil, for creating datetime sequences

• tabulate, for creating tables

A.2.2 API Setup And Obtaining Ticker Data

api = PushshiftAPI() #will be used to access reddit

NASDAQ_df = pd.read_csv(’NASDAQ.csv’) #import ticker data

AMEX_df = pd.read_csv(’AMEX.csv’)

NYSE_df = pd.read_csv(’NYSE.csv’)

frames = [NASDAQ_df, AMEX_df, NYSE_df] #combine the ticker data into

#a dataframe

temp = pd.concat(frames)

cols = list(temp.columns)

temp.drop(cols[2:], axis = 1, inplace = True)

tickers = temp[’Symbol’].tolist()

def stonk_mentions(start_time, end_time, tickers, m = 1):

#function that searches the r/wallstreetbets subreddit

between specified time periods.

returns the tickers mentioned and how many posts mentioned them

end_time_int = int(end_time.timestamp())

start_time_int = int(start_time.timestamp())

next_month_time = end_time + relativedelta.relativedelta(months=m)

submissions = api.search_submissions(after = start_time_int,

before = end_time_int,

subreddit = ’wallstreetbets’,

filter = [’url’, ’author’, ’title’, ’subreddit’])

df = pd.DataFrame({"Ticker" : tickers})

#pulls in list of tickers to cross reference

mentions = [] #stores each individual mention

10

for submission in submissions:

words = submission.title.split()

cashtags = list(set(filter(lambda word: word.upper().startswith(’$’), words)))

#for loop identifies cashtags

if len(cashtags) > 0:

#if a cashtage is identified in each submission title

it pulls out the ticker

for cashtag in cashtags:

tick = cashtag.replace(’$’,’’)

if tick in tickers:

mentions.append(tick)

occurances = []

for tick in tickers:

occurances.append(mentions.count(tick.upper()))

#counts the number of times each ticker in our list

#is mentioned

df[’Mentions’] = occurances

df[’Start_Time’] = start_time

df[’End_Time’] = end_time

df2 = df[df[’Mentions’] > 20]

#creates dataframe for tickers over 20 mentions

df2 = df2.sort_values(’Mentions’, axis = 0, ascending = False)

return df, df2

t = datetime.datetime(2020,11,30)

#runs the function for weekly intervals starting at this date

dates = [t]

for i in range(1,53):

dates.append(t+relativedelta.relativedelta(weeks=i))

#12 months of time history

frames_df = []

frames_df2 = []

for i in range(len(dates)):

df, df2 = stonk_mentions(dates[i], dates[i+1], tickers, 1)

frames_df.append(df) #combines each outputted dataframe

frames_df2.append(df2)

print(i)

frames_df2.reset_index(inplace = True) #reset index as we are working with this dataframe

A.2.3 Returns Calculation

This section calculates the weekly returns for the ticker data that we have obtained. The code focuses
on ticker’s that have over 20 submissions discussing them but this can be adjusted.

df = frames_df2

11

returns_0w_list = []

returns_1w_list = []

vol_0w_list = []

vol_1w_list = []

for i in range(len(df)):

#for the dataframe that we are working with this function

#gets the returns needed

start_time = datetime.datetime.strptime(df[’Start_Time’][i], ’%Y-%m-%d’)

end_time = datetime.datetime.strptime(df[’End_Time’][i], ’%Y-%m-%d’)

next_time = end_time + relativedelta.relativedelta(weeks=1)

#for the 0 week and 1 week strategies

try: #tries to pull the adjusted close for specified interval

price_0w = web.get_data_yahoo(df[’Ticker’][i],

start = start_time,

end = end_time)[’Adj Close’]

returns_0w_list.append((price_0w[-1]/price_0w[0]) - 1)

vol_0w_list.append(np.std(price_0w.pct_change()))

#calculates return and volatility in that time period

price_1w = web.get_data_yahoo(df[’Ticker’][i],

start = end_time,

end = next_time)[’Adj Close’]

returns_1w_list.append((price_1w[-1]/price_1w[0]) - 1)

vol_1w_list.append(np.std(price_1w.pct_change()))

except: #if it can’t obtain it returns 0 instead

returns_0w_list.append(0)

returns_1w_list.append(0)

vol_0w_list.append(0)

vol_1w_list.append(0)

pass

#adds the results to the dataframe

df[’Returns_0w’] = returns_0w_list

df[’Returns_1w’] = returns_1w_list

df[’Vol_0w’] = vol_0w_list

df[’Vol_1w’] = vol_1w_list

A.2.4 Portfolio Construction and Analysis

This final section creates the equally weighted strategy portfolios and obtains benchmark data to
compare them with.

df = df[[’Ticker’, ’Mentions’,

’Start_Time’, ’End_Time’, ’Returns_0w’, ’Returns_1w’, ’Vol_0w’,

’Vol_1w’]]

#final dataframe we are working with

df[[’Mentions’,’Returns_0w’,’Returns_1w’,’Vol_0w’,’Vol_1w’]].corr()

df = df.sort_values(by=["Start_Time", ’Mentions’])

#time intervals we need to calculate portfolio and benchmark returns for

t = datetime.datetime(2020,11,30)

12

dates = [t]

for i in range(1,53):

dates.append(t+relativedelta.relativedelta(weeks=i))

#basing cumulative returns at 1

weekly_returns0w = [1,]

weekly_returns1w = [1, 1]

SP500_returns = [1,]

for date in dates[:-1]: #calculates each strategies’ portfolio

#and obtains the S&P 500 returns

return0w = []

return1w = []

start_time = datetime.datetime.strptime(df[’Start_Time’][i], ’%Y-%m-%d’)

end_time = date + relativedelta.relativedelta(weeks=1)

price_0w = web.get_data_yahoo(’SPY’,

start = date,

end = end_time)[’Adj Close’]

SP500_returns.append((price_0w[-1]/price_0w[0]))

for i in range(len(df[’Start_Time’])):

if dt.strptime(df[’Start_Time’][i], "%Y-%m-%d").date() == date.date():

return0w.append(df[’Returns_0w’][i] + 1)

return1w.append(df[’Returns_1w’][i]+ 1)

if len(return0w) == 0:

weekly_returns0w.append(1)

else:

weekly_returns0w.append(sum(return0w)/len(return0w))

if len(return1w) == 0:

weekly_returns1w.append(1)

else:

weekly_returns1w.append(sum(return1w)/len(return1w))

weekly_returns0w_cumulative_return = np.cumprod(weekly_returns0w)

weekly_returns1w_cumulative_return = np.cumprod(weekly_returns1w[:-1])

SP500_returns_cumulative_return = np.cumprod(SP500_returns)

#calculates the cumulative return

#graphs of results

plt.plot(dates, weekly_returns0w_cumulative_return, label = ’0 Week

Strategy’, color = ’blue’)

plt.plot(dates, SP500_returns_cumulative_return, label = ’S&P 500’,

color = ’red’)

plt.legend()

plt.show()

plt.plot(dates, weekly_returns1w_cumulative_return, label = ’1 Week

Strategy’, color = ’green’)

plt.plot(dates, SP500_returns_cumulative_return, label = ’S&P 500’,

color = ’red’)

plt.legend()

13

plt.show()

df_cumreturns = pd.DataFrame({’Dates’: dates,

’S&P500 Weekly Return’: SP500_returns,

’S&P500 Cumulative Return’ : SP500_returns_cumulative_return,

’+0 Weekly Return’: weekly_returns0w,

’+0 Cumulative Return’: weekly_returns0w_cumulative_return,

’+1 Weekly Return’: weekly_returns1w[:-1],

’+1 Cumulative Return’: weekly_returns1w_cumulative_return,

})

table = [[’Portfolio’, ’Total Return’, ’Volatility’],

#outputs the final table of results

[’S&P 500’,

"{:.2%}".format(-1 + float(df_cumreturns[’S&P500 Cumulative Return’].tail(1))),

"{:.2%}".format(np.std(df_cumreturns[’S&P500 Weekly Return’]))],

[’Week 0 Strategy’,

"{:.2%}".format(-1 + float(df_cumreturns[’+0 Cumulative Return’].tail(1))),

"{:.2%}".format(np.std(df_cumreturns[’+0 Weekly Return’]))],

[’Week 1 Strategy’,

"{:.2%}".format(-1 + float(df_cumreturns[’+1 Cumulative Return’].tail(1))),

"{:.2%}".format(np.std(df_cumreturns[’+1 Weekly Return’]))],

]

print(tabulate(table, headers=’firstrow’))

A.3 Data Comparisons

Below are the five generated sets of series comparisons (figures 3 to 7) for ticker symbols ’GME’,
’WISH’, ’TSLA’, ’PLTR’ and ’BABA’.

14

F
ig
u
re

3:
C
om

p
ar
is
on

G
ra
p
h
s
fo
r
’G

M
E
’
T
ic
ke
r
D
at
a

15

F
ig
u
re

4:
C
om

p
ar
is
on

G
ra
p
h
s
fo
r
’W

IS
H
’
T
ic
ke
r
D
at
a

16

F
ig
u
re

5:
C
om

p
ar
is
on

G
ra
p
h
s
fo
r
’T

S
L
A
’
T
ic
ke
r
D
at
a

17

F
ig
u
re

6:
C
om

p
ar
is
on

G
ra
p
h
s
fo
r
’P
L
T
R
’
T
ic
ke
r
D
at
a

18

F
ig
u
re

7:
C
om

p
ar
is
on

G
ra
p
h
s
fo
r
’B
A
B
A
’
T
ic
ke
r
D
at
a

19

B Bibliography

1. https://praw.readthedocs.io/en/stable/

2. https://psaw.readthedocs.io/en/latest/

3. https://github.com/ranaroussi/yfinance

4. https://www.nltk.org/

5. https://www.youtube.com/watch?v=8VZhog5C3bU&list=WL&index=14

6. https://pandas-datareader.readthedocs.io/en/latest/

20

	Introduction
	Preliminaries
	Data Collection Methodology
	Text & Time Data
	Stock Price, Volume & Ticker Data
	Sentiment Data
	Ticker Mentions & Frequency Data: General Approach
	Ticker Mentions & Frequency Data: Cashtag Approach

	Results
	Correlation of Social Media Data with Market Data
	Portfolio Construction with Cashtag Ticker Frequency Data

	Conclusion & Evaluation
	Correlation Evaluation
	Portfolio Construction Evaluation

	Appendix
	Code Overview - Connecting API and Data Extraction
	Packages
	API Client Setup
	Ticker Symbol List
	Sentiment Analyser
	Submission Extraction
	Data Extraction

	Code Overview - Portfolio Construction and Evaluation
	Packages
	API Setup And Obtaining Ticker Data
	Returns Calculation
	Portfolio Construction and Analysis

	Data Comparisons

	Bibliography

